Поиск в словарях
Искать во всех

Энциклопедия Кольера - теплота теплота и температура

 

Теплота теплота и температура

теплота теплота и температура
К статье ТЕПЛОТА Количество тепловой энергии в веществе нельзя определить, наблюдая за движением каждой его молекулы по отдельности. Напротив, только изучая макроскопические свойства вещества, можно найти усредненные за некий период времени характеристики микроскопического движения многих молекул. Температура вещества - это средний показатель интенсивности движения молекул, энергия которого и есть тепловая энергия вещества. Один из самых привычных, но и наименее точных способов оценки температуры - на ощупь. Трогая предмет, мы судим о том, горячий он или холодный, ориентируясь на свои ощущения. Конечно, эти ощущения зависят от температуры нашего тела, что подводит нас к понятию теплового равновесия - одному из важнейших при измерении температуры. Тепловое равновесие. Очевидно, что если два тела A и B (рис.1) плотно прижать друг к другу, то, потрогав их спустя достаточно долгое время, мы заметим, что температура их одинакова. В этом случае говорят, что тела A и B находятся в тепловом равновесии друг с другом. Однако тела, вообще говоря, не обязательно должны соприкасаться, чтобы между ними существовало тепловое равновесие, - достаточно, чтобы их температуры были одинаковыми. В этом можно убедиться с помощью третьего тела C, приведя его сначала в тепловое равновесие с телом A, а затем сравнив температуры тел C и B. Тело C здесь играет роль термометра. В строгой формулировке этот принцип называется нулевым началом термодинамики: если тела A и B находятся в тепловом равновесии с третьим телом C, то эти тела находятся также в тепловом равновесии друг с другом. Этот закон лежит в основе всех способов измерения температуры. Измерение температуры. Если мы хотим проводить точные эксперименты и вычисления, то таких оценок температуры, как горячий, теплый, прохладный, холодный, недостаточно - нам нужна проградуированная температурная шкала. Существует несколько таких шкал, и за точки отсчета в них обычно взяты температуры замерзания и кипения воды. Четыре наиболее распространенные шкалы представлены на рис.2. Стоградусная шкала, по которой точке замерзания воды соответствует 0?, а точке кипения 100?, называется шкалой Цельсия по имени А.Цельсия, шведского астронома, который описал ее в 1742. Полагают, что впервые применил эту шкалу шведский натуралист К.Линней. Сейчас шкала Цельсия является самой распространенной в мире. Температурная шкала Фаренгейта, в которой точкам замерзания и кипения воды соответствуют крайне неудобные числа 32 и 212?, была предложена в 1724 Г.Фаренгейтом. Шкала Фаренгейта широко распространена в англоязычных странах, но ею почти не пользуются в научной литературе. Для перевода температуры по Цельсию (?С) в температуру по Фаренгейту (?F) существует формула ?F = (9/5)?C + 32, а для обратного перевода - формула ?C = (5/9)(?F?32). Обе шкалы - как Фаренгейта, так и Цельсия, - весьма неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды и выражается отрицательным числом. Для таких случаев были введены абсолютные шкалы температур, в основе которых лежит экстраполяция к так называемому абсолютному нулю - точке, в которой должно прекратиться молекулярное движение. Одна из них называется шкалой Ранкина, а другая - абсолютной термодинамической шкалой; температуры по ним измеряются в градусах Ранкина (?R) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля, а точка замерзания воды соответствует 491,7? R и 273,16 K. Число градусов и кельвинов между точками замерзания и кипения воды по шкале Цельсия и абсолютной термодинамической шкале одинаково и равно 100; для шкал Фаренгейта и Ранкина оно тоже одинаково, но равно 180. Градусы Цельсия переводятся в кельвины по формуле K = ?C + 273,16, а градусы Фаренгейта - в градусы Ранкина по формуле ?R = ?F + 459,7. В основе действия приборов, предназначенных для измерения температуры, лежат разные физические явления, связанные с изменением тепловой энергии вещества, - изменения электрического сопротивления, объема, давления, излучательных характеристик, термоэлектрических свойств. Один из наиболее простых и знакомых инструментов для измерения температуры - ртутный стеклянный термометр, изображенный на рис.3,а. Шарик с ртутью в нижней части термометра располагают в среде или прижимают к предмету, температуру которого хотят измерить, и в зависимости от того, получает шарик тепло или отдает, ртуть расширяется или сжимается и ее столбик поднимается или опускается в капилляре. Если термометр заранее проградуирован и снабжен шкалой, то можно прямо узнать температуру тела. Другой прибор, действие которого основано на тепловом расширении, - биметаллический термометр, изображенный на рис.3,б. Основной его элемент - спиральная пластинка из двух спаянных металлов с разными коэффициентами теплового расширения. При нагревании один из металлов расширяется сильнее другого, спираль закручивается и поворачивает стрелку относительно шкалы. Такие устройства часто используют для измерения температуры воздуха в помещениях и на улице, однако они не подходят для определения локальной температуры. Локальную температуру измеряют обычно с помощью термопары, представляющей собой две проволочки из разнородных металлов, спаянные с одного конца (рис.4,а). При нагревании такого спая на свободных концах проволочек возникает ЭДС, обычно составляющая несколько милливольт. Термопары делают из разных металлических пар: железа и константана, меди и константана, хромеля и алюмеля. Их термо-ЭДС практически линейно меняется с температурой в широком температурном диапазоне. Известен и другой термоэлектрический эффект - зависимость сопротивления проводящего материала от температуры. Он лежит в основе работы электрических термометров сопротивления, один из которых изображен на рис.4,б. Сопротивление небольшого термочувствительного элемента (термопреобразователя) - обычно катушки из тонкой проволоки - сравнивают с сопротивлением проградуированного переменного резистора, используя мост Уитстона. Выходной прибор может быть проградуирован непосредственно в градусах. Для измерения температуры раскаленных тел, испускающих видимый свет, используют оптические пирометры. В одном из вариантов этого устройства свет, излучаемый телом, сравнивают с
Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):