Социологическая энциклопедия - анализ многомерный статистический
Связанные словари
Анализ многомерный статистический
Для представления структуры связей между переменными обычно используется матрица корреляций . Ее анализ, заключающийся в выделении подмножеств переменных, тесно коррелирующих друг с другом, может осуществляться "вручную", например, с помощью графа, отражающего наиболее существенные связи между переменными, либо методами компьютерного анализа, такими, как метод главных компонент, факторный анализ, кластерный анализ переменных. Анализ структуры связей часто рассматривается в качестве самостоятельной задачи, например, при исследовании структуры ценностей, мотивов и т.п., для проверки психометрических шкал на надежность и в других случаях. Однако он может использоваться и в качестве промежуточного этапа при решении задачи снижения размерности пространства признаков.
Снижение размерности обычно применяется для построения пространства, более удобного для решения задач классификации и исследования причинных связей, чем исходный набор переменных. Задача снижения размерности заключается в том, чтобы от большого количества исходных переменных перейти к нескольким обобщенным показателям. Метод главных компонент , анализ факторный , метод многомерного шкалирования предусматривают для этого разнообразные процедуры.
Задачи и методы классификации, в зависимости от условий, делятся на три группы: классификация по заданным формальным критериям, автоматическая классификация и классификация с обучением. Классификация по заданным критериям, строго говоря, не является статистическим методом. Она состоит в группировке объектов по одному или нескольким показателям. В последнем случае классификация называется перекрестной или лингвистической (например, половозрастная структура населения).
Автоматическую классификацию применяют в тех случаях, когда критерии группировки неизвестны и отсутствуют априорные представления о количестве и характере классов. Для ее построения используются методы анализа кластерного , позволяющие выделить группы объектов, близких друг к другу по значениям измеренных переменных. В основе кластерного анализа лежит вычисление расстояний между объектами.
Классификация с обучением применяется, когда критерии классификации неизвестны, но известно количество классов и их типологические особенности. В этом случае может быть сформирована так называемая выборка обучающая , состоящая из реальных объектов, обладающих соответствующими характеристиками, или/и искусственных объектов моделей "типичных представителей" классов. В обучающей выборке должны присутствовать "представители" всех предполагаемых классов. Классификация конкретного объекта состоит в том, что вычисляется расстояние между ним и объектами из обучающей выборки и объект причисляется к тому классу, расстояние до которого для него оказалось минимальным. Классификация с обучением осуществляется некоторыми методами кластерного и дискриминантного анализа.
Анализу статистических причинных связей в последние годы уделяется особое внимание. Классическим методом для решения таких задач является дисперсионный анализ, в основе которого лежит эксперимент факторный (не путать с анализом факторным ). Начиная с 1960-х активно разрабатываются регрессионные и регрессионно-подобные причинные модели ( Каузальное моделирование), а также техники, позволяющие использовать в этих моделях не только "количественные", но и "качественные" переменные ( Dummy-кодирование). В настоящее время для исследования причинных связей, в зависимости от характера используемых переменных, применяются методы множественной линейной регрессии, логистической регрессии, дискриминантного анализа и т.п. Эти методы предполагают наличие единственной зависимой переменной и не позволяют исследовать структуру связей между независимыми переменными (предикторами). Структура связей между предикторами может быть учтена в моделях анализа путевого .
Наиболее общим является метод линейных структурных уравнений , позволяющий строить сложные модели с большим числом взаимодействующих между собой зависимых и независимых переменных, среди которых могут быть не только наблюдаемые, но и латентные признаки. Регрессионный, дисперсионный, путевой и факторный анализ являются его частными случаями.
О.В. Терещенко
Вопрос-ответ:
Похожие слова
Самые популярные термины
1 | 1502 | |
2 | 1395 | |
3 | 1318 | |
4 | 1286 | |
5 | 1279 | |
6 | 1239 | |
7 | 1214 | |
8 | 1196 | |
9 | 1183 | |
10 | 1165 | |
11 | 1141 | |
12 | 1132 | |
13 | 1061 | |
14 | 957 | |
15 | 948 | |
16 | 919 | |
17 | 917 | |
18 | 879 | |
19 | 869 | |
20 | 821 |