Большая советская энциклопедия - кратный интеграл
Кратный интеграл
кратный интеграл
Кратный интеграл, интеграл от функции, заданной в какой-либо области на плоскости, в трехмерном или n-мерном пространстве. Среди К. и. различают двойные интегралы, тройные интегралы и т. д. n-кратные интегралы. Пусть функция f (x, y) задана в некоторой области D плоскости хОу. Разобьем область D на n частичных областей di, площади которых равны si, выберем в каждой области di точку (xi, hi) (см. рис.) и составим интегральную сумму Если при неограниченном уменьшении максимального диаметра частичных областей di суммы S имеют предел независимо от выбора точек (xi, hi), то этот предел называют двойным интегралом от функции f (x, у) по области D и обозначают Аналогично определяется тройной интеграл и вообще n-кратный интеграл. Для существования двойного интеграла достаточно, например, чтобы область D была замкнутой квадрируемой областью, а функция f (x, y) была непрерывна в D. К. и. обладают рядом свойств, аналогичных свойствам простых интегралов. Для вычисления К. и. обычно приводят его к повторному интегралу. В специальных случаях для сведения К. и. к интегралам меньшей размерности могут служить Грина формулы и Остроградского формула. К. и. имеют обширные применения: с их помощью выражаются объемы тел, их массы, статические моменты, моменты инерции и т. п. Лит. см. при статьях Интегральное исчисление, Интеграл.
Рейтинг статьи:
Комментарии:
Вопрос-ответ:
Что такое кратный интеграл
Значение слова кратный интеграл
Что означает кратный интеграл
Толкование слова кратный интеграл
Определение термина кратный интеграл
kratnyy integral это
Похожие слова
Ссылка для сайта или блога:
Ссылка для форума (bb-код):
Самые популярные термины
1 | 7680 | |
2 | 4981 | |
3 | 3123 | |
4 | 3061 | |
5 | 2933 | |
6 | 2922 | |
7 | 2861 | |
8 | 2830 | |
9 | 2793 | |
10 | 2667 | |
11 | 2592 | |
12 | 2414 | |
13 | 2292 | |
14 | 2256 | |
15 | 2239 | |
16 | 2202 | |
17 | 2144 | |
18 | 2126 | |
19 | 2112 | |
20 | 2094 |