Поиск в словарях
Искать во всех

Советский философский словарь - доказательство

 

Доказательство

доказательство
в логике, процесс (метод) установления истины, обоснование истинности суждения. Термин «Д.» допускает ряд пониманий, отличающихся друг от друга по степеням общности. Однако во всех модификациях понятия Д. отчётливо прослеживаются две противоположные тенденции. Первая обусловлена относительностью и содержат. характером понятия истины, поскольку оно означает соответствие (более или менее точное и полное) нек-рой части реальной действительности. Вторая связана с тем, что Д. должно гарантировать истинность тезиса именно в этом состоит специфика понятия Д., выделяющая его из более широкого класса процедур, к-рые являются подтверждениями тезисов и могут обладать большей или меньшей степенью убедительности. Понятие Д. должно служить полным подтверждением истинности доказываемого предложения, а потому носить дедуктивный (см. Дедукция) характер; отсюда тенденция ко всё большей формализации понятия Д.

Противопоставление содержат. и формального аспектов понятия Д. проявляется прежде всего в различии широкого и узкого понимания этого термина.

Д. в широком смысле это любая процедура установления истинности к.-л. суждения (наз. тезисом, или заключением, данного Д.) как при помощи нек-рых логич. рассуждений, так и посредством чувств. восприятия нек-рых физич. предметов и явлений. Именно такой характер имеют Д., обоснования большей части утверждений гуманитарных наук, а в ещё более отчётливой форме эмпирич. (экспериментальные или основанные на данных наблюдений) Д. в естеств. науках. Хотя все такие Д. включают в качестве составных частей дедуктивные фрагменты умозаключения, связывающие ссылки на опыт с доказываемым тезисом, их можно считать индуктивными, т. к. здесь имеет место переход от частных посылок к общим заключениям (индукция), совершаемый (в неявной форме) по правилам индуктивной логики.

Д. в узком смысле, слова, характерные для дедуктивных наук (логики, математики и построенных по их образцу и на их основе разделов теоретич. физики), представляют собой цепочки правильных умозаключений, ведущих от истинных посылок (исходных для данною Д. суждений) к доказываемым (заключит.) тезисам. Истинность посылок не должна обосновываться в самом Д., а должна к.-л. образом устанавливаться заранее.

Последоват. развитие этой традиц. (идущей от Аристотеля) концепции Д., связанное с аксиоматическим методом, потребовало существ. её уточнения и даже пересмотра. Однако произведённый Гильбертом пересмотр понятия Д. на рубеже 19-20 вв. не был до конца последовательным. В связи с обострившимися проблемами непротиворечивости науч. теорий Гильберт выдвинул программу формализации Д. дедуктивных . теорий, предполагающую не только явное указание всех исходных понятий и исходных предложений (аксиом) каждой данной теории, но л такое же явное указание всех используемых в выводах (в частности, в Д.) этой теории логич. средств. При такой постановке вопроса проблема убедительности (правильности) Д. получает объективный характер. Оказалось возможным представить науч. теорию в виде исчисления, или формальной системы, состоящей из формул, получающихся из формул нек-рого исходного запаса (аксиом) посредством чисто механич. применения правил вывода.

Последоват. формализация понятия Д. открывает возможность передачи нек-рых функций человека электронным вычислит. машинам. Однако из этого не следует заключение о возможности сведения всех содержат. аспектов понятия Д. к формальным: правила вывода, хотя они и имеют дело с формальными объектами (формулами), формулируются на содержат. языке, а все проблемы, касающиеся природы формальных исчислений в целом, ставятся и решаются чисто содержат. средствами (см. Метатеория). Именно эти содержат. рассуждения (и содержат. Д.) составляют предмет самой теории Д.

Более того, было доказано, что задача полной и одновременно непротиворечивой формализации даже таких относительно простых математич. теорий, как арифметика (теория чисел), в принципе неосуществима, так что в них всегда имеется нек-рый «неформализуемый остаток» (К. Гёдель, 1931). Наконец, никакая формализация дедуктивных теорий не снимает проблемы их интерпретации, т. е. соотнесения с нек-рой описываемой ею и внешней для неё реальности, адекватность к-рого только и может быть в конечном счёте обоснованием истинности теории в целом. См. также Интуиционизм, Конструктивное направление.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое доказательство
Значение слова доказательство
Что означает доказательство
Толкование слова доказательство
Определение термина доказательство
dokazatelstvo это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины